Solution:

1.For t=2, \(\displaystyle{x}={\left({80} \cos{{45}}^{o}\right)}{t}={\left({80} \cos{{45}}^{o}\right)}{\left({2}\right)}={80}\cdot\frac{\sqrt{{2}}}{{2}}\cdot{2}={80}\sqrt{{2}}\)

For t=2, \(\displaystyle{y}={6}+{\left({80} \sin{{45}}^{o}\right)}{t}-{16}\)

\(\displaystyle{t}^{2}={6}+{\left({80} \sin{{45}}\right)}{\left({2}\right)}={16}{\left({2}\right)}^{2}={6}{\left({80}\cdot\frac{\sqrt{{2}}}{{2}}\cdot{2}\right)}-{16}{\left({4}\right)}={6}+{80}\sqrt{{2}}-{64}={80}\sqrt{{2}}-{58}\)

2. So the coordinate of the point is=(x,y)=

\(\displaystyle{\left({80}\sqrt{{2}},{8}-\sqrt{{2}}-{58}\right)}\)

Answer:\(\displaystyle{\left({80}\sqrt{{2}},{8}-\sqrt{{2}}-{58}\right)}\)